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ABSTRACT: In the present study, we have employed two statistical models to predict summertime (July–September)
tropical cyclone (TC) activity over the East China Sea using the least absolute deviation (LAD) regression and the
Poisson regression method. Through a lagged correlation analysis of the relationship between the seasonal TC frequency
in the target region and several pre-season environmental parameters for the period 1979–2003, physically interpretable
and statistically significant large-scale environmental parameters were identified as potential predictors. After applying
the predictor screening method based on the stepwise regression, three predictors, i.e. sea surface temperature, outgoing
long-wave radiation and 850-hPa relative vorticity were finally chosen. They are related to the phase transition of El
Niño/Southern Oscillation and the strength of the western North Pacific summer monsoon. The correlation coefficient
between the predicted and the observed frequency is 0.75 for the LAD model and 0.78 for the Poisson model. The
predictions using the two models have a skill improvement of about 60% compared to the reference forecasts. The present
study suggests that both models are skillful in predicting summertime TC frequency over the East China Sea with the
Poisson model being slightly more skillful than the LAD model. Copyright  2009 Royal Meteorological Society
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1. Introduction

Tropical cyclone (TC) is one of the most devastating
natural phenomena seen in East Asia. Every year, during
peak TC season (July–September), East Asian people
living in coastal areas suffer serious social and economic
damage from the strong winds and torrential rain induced
by land-falling TCs. To reduce the damage, it is crucial
for weather forecasters to have enhanced capability of
real-time forecast on the landfall or approach of TCs
to East Asian countries (e.g. China, Japan, Taiwan and
Korea). In addition, advanced prediction of seasonal TC
frequency in a regional domain would be helpful for
decision makers to be more proactive. So to speak,
improving our ability of both real-time forecast and
seasonal prediction are inevitable to mitigate the potential
damage caused by TC-induced prospective flash floods,
tidal waves and high winds.

For the prediction of seasonal TC activity, empiri-
cal statistical methods that use environmental predic-
tors have been widely applied as a primary operational
technique. Gray et al. (1992, 1993, 1994) proposed a
linear regression model to predict seasonal hurricane
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activity in the North Atlantic using various presea-
son environmental parameters, such as El Niño/Southern
Oscillation (ENSO), Quasi-Biennial Oscillation and west-
ern Sahel rainfall. Elsner and Schmertmann (1993) devel-
oped a skillful seasonal prediction method for intense
hurricanes using a nonlinear Poisson regression model.
Further, Hess et al. (1995) improved the hurricane fore-
casting by separating tropical-only hurricanes from those
influenced by extra-tropical factors. On the other hand,
the prediction of seasonal TC frequency in the western
North Pacific (WNP) was pioneered by Chan et al. (1998,
2001). They developed a seasonal prediction model
using a projection pursuit regression technique, which
incorporates various preseason environmental parame-
ters, including ENSO, cold surge, polar vortex and so
on. Recently, Lee et al. (2007) attempted to increase
the performance of the prediction model for seasonal
TC frequency over the WNP using ‘smart predictors’.
Smart predictors refer to a combination of predictors,
yielding the best prediction performance in a hindcast
setting. Along the same line as Lee et al. (2007), Kwon
et al. (2007) suggested the statistical ensemble predic-
tion of seasonal TC frequency by considering the uncer-
tainty of a single forecast. Previous studies demonstrated
that basin-wide seasonal TC frequency might be pre-
dictable several months in advance by incorporating pre-
observed large-scale environmental parameters into the
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prescribed statistical relations between predictors and the
predictand.

In addition to the prediction of basin-wide seasonal
TC activity, there has been an increasing demand for
the seasonal prediction of regional TC activity, i.e. the
number of TCs influencing a specific domain (Liu and
Chan, 2003; Saunders and Lea, 2005; Elsner and Jagger,
2006; Chu et al., 2007). Compared with the prediction
of basin-wide seasonal TC frequency, the prediction for
a specific region may be more complicated because the
prediction skill is affected, not only by TC genesis but
also by TC track. Many previous studies showed that
the genesis locations and the tracks of TCs over the
WNP are modulated by various large-scale atmospheric
and oceanic phenomena, such as ENSO (e.g. Wang and
Chan, 2002; Chan and Liu, 2004; Chu, 2004), the Pacific
decadal variability (e.g. Matsuura et al., 2003; Ho et al.,
2004), the intra-seasonal oscillation (or Madden-Julian
Oscillation) (e.g. Harr and Elsberry, 1995; Nakazawa,
2006; Kim et al., 2008), the Antarctic Oscillation (e.g.
Ho et al., 2005), and the quasi-stationary Rossby wave
train in the upper troposphere (e.g. Kim et al., 2005b).
However, most of the studies mainly dealt with the
contemporary relationship between the phenomena and
TC activity, so the relationships demonstrated are not
appropriate for their prediction.

Recently, Chu et al. (2007) have tried to predict the
seasonal TC frequency in the vicinity of Taiwan using
environmental predictors, e.g. sea surface temperature
(SST), sea level pressure, low-level relative vorticity, pre-
cipitable water and vertical wind shear. On the basis of
their research, the local TC activity may be predictable
in advance using classical statistical tools, such as a mul-
tivariate least absolute deviation (LAD) regression (Gray
et al., 1992). Motivated by their studies, we attempt to
predict the seasonal TC activity over the East China Sea,
where the TCs striking East Asian countries normally
pass. We examine the preseason environmental parame-
ters that correlate with the seasonal TC frequency over the
target region and found physically reasonable signals of
ENSO and the WNP summer monsoon. Using these lag-
correlated environmental parameters, we employ statis-
tical prediction models using two regression techniques:
the LAD regression and the Poisson regression.

The structure of this paper is as follows. The data
and the statistical methods are presented in Section 2.
The analyses of large-scale environmental parameters
that correlate with summertime TC activity over the
East China Sea and the determination of predictors are
described in Section 3. The results of the statistical
models are discussed in Section 4 and the conclusion
is given in Section 5.

2. Data and prediction method

2.1. Data

This study utilizes the dataset of TC activity archived by
the Regional Specialized Meteorological Centers-Tokyo

Typhoon Center. The dataset contains information about
the name, date, TC type, latitude and longitude position,
central pressure and maximum sustained wind speed
(vmax) of TCs at 6-h intervals. In general, TCs are divided
into three stages depending on vmax: tropical depression
(vmax < 17 m s−1), tropical storm (17 m s−1 ≤ vmax <

34 m s−1) and typhoon (vmax ≥ 34 m s−1). Here, TC
refers to tropical storms and typhoons that have a vmax

greater than 17 m s−1. While the TC data are available
from 1951 to the present, there may be reliability
problems with the locations and intensities of the TCs
in early periods prior to satellite observation. Also, there
are inter-decadal changes in the TC tracks associated with
the westward expansion of the WNP sub-tropical high in
the late 1970s (e.g. Ho et al., 2004). Thus, we confine
the analysis period to 1979–2007 (29 years) in order to
avoid these potential impacts.

Various atmospheric and oceanic data are used to
determine the predictors. The sea level pressure, 850-
hPa zonal wind and 850-hPa relative vorticity data
were obtained from the National Centers for Environ-
mental Prediction-Department of Energy (NCEP-DOE)
reanalysis-2 (Kanamitsu et al., 2002). The NCEP-DOE
reanalysis-2 data have a horizontal resolution of 2.5° ×
2.5° in latitude–longitude. The monthly mean SST and
outgoing long-wave radiation (OLR) data are taken from
the National Oceanic and Atmospheric Administration-
Climate Diagnostic Center. The SST and OLR data have
a horizontal resolution of 2° × 2° and 2.5° × 2.5° in lat-
itude–longitude, respectively. The available period of
these datasets covers the analysis period of this study.

2.2. Statistical prediction method

2.2.1. LAD regression

The multivariate linear regression model is generally
presented as

ŷ = a0 +
k∑

i=1

aixi (1)

where ŷ is the predicted value, a0 is the regression con-
stant, k is the number of predictors, xi represents the
predictors, and ai are the corresponding regression coef-
ficients. In the LAD regression, the regression coefficients
and constant are obtained by minimizing a sum of abso-
lute errors (SAE) for the training period. The SAE is cal-
culated by the absolute values of the difference between
the original values and the predicted values, as follows
in Equation (2).

SAE =
N∑

j=1

|yj − ŷj | =
N∑

j=1

∣∣∣∣∣yj − a0 −
k∑

i=1

aixij

∣∣∣∣∣ (2)

where N is the training period, yj are the original values,
and the others are the same as in Equation (1).

Because the LAD regression uses the SAE instead of
a sum of square errors, which is used in an ordinary
least square error regression, the LAD regression is less
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sensitive to extreme values and statistically more stable
than the least square error regression. The LAD regres-
sion is more adequate for small sample size problem
because it does not assume that the residuals follow a
Gaussian distribution. For these reasons, the LAD regres-
sion has been widely used for the statistical models to
predict the seasonal TC activity both in the North Atlantic
and in the WNP (e.g. Gray et al., 1992, 1993, 1994; Chu
et al., 2007).

The LAD regression cannot be solved in an analytical
way because of the absolute operation. For this purpose,
we use the Bloomfield-Steiger algorithm (Bloomfield and
Steiger, 1980), which is based on the method to solve the
linear programming problem using an iteration method.
The LAD regression can be converted to the linear
programming problem because they are similar in basic
nature. The Bloomfield-Steiger algorithm has a concept
of finding the normalized steepest direction to minimize
the SAE in each iteration process, so that it allows
efficient calculation in practice. A detailed explanation
and pseudo code for the Bloomfield-Steiger algorithm are
given by Chu et al. (2007).

2.2.2. Poisson regression

The Poisson probability distribution of the number of
occurrences of an event is expressed in the following
equation.

P(h|λ) = e−λλh

h!
for h = 0, 1, 2, . . . and λ > 0 (3)

where h denotes the number of occurrences of an
event and λ is the Poisson intensity parameter. The
Poisson distribution restricts the possible outcomes to
non-negative values. This restriction is suitable for the
prediction of the number of TC occurrences because it is
always represented by a non-negative integer (Elsner and
Schmertmann, 1993; McDonell and Holbrook, 2004).

In the Poisson regression model, the expected number
of occurrences of the event, i.e. the predictand, is assumed
as the exponential function of the linear combinations of
the predictors, as seen in the following equation.

E[P(h|λ)] = exp

(
k∑

i=1

βixi + β0

)
(4)

where k is the number of predictors, xi represents the pre-
dictors, βi are the corresponding regression coefficients,
and β0 is the regression constant. The regression coef-
ficients and constant are estimated by maximizing the
likelihood of the predictand in Equation (3) using the
iteration method.

3. Statistical prediction

3.1. Predictand

The target area of the prediction in this study is 25–35°N
and 120–130 °E (the box region in Figure 1(a)). The
target region covers the East China Sea, including the
east coast of China, the south coast of the Korean
peninsula and the southwest coast of Japan. The TCs
of which centres enter the region at least once during
their life time are considered the TC passing through
the region. Many TCs, forming in the Philippine Sea,
pass across this region, recurve near the latitude 25°N,
and then approach the East Asian centuries (Figure 1(a)).
Among the 114 TCs passing through the region during
July–September, 94 TCs (82% of the total TCs) strike
either the China, Taiwan, Korea or Japan. Figure 1(b)
depicts the climatological distribution of the monthly TC
frequency passing across the target region, showing a
large seasonal variation. The climatological number of
TCs is about one for July and September, about 1.6 for
August, about 0.5 for June and October, less than 0.1
for April, May, and November, and none for December
to March. The number of summertime (July–September)
TCs is equivalent to about 75% of the annual number of
TCs passing over the East China Sea. Most of the damage
caused by TCs in East Asia occurs during these 3 months.
For this reason, we confine the prediction season to July,
August and September.

3.2. Potential predictors

To examine the precursory effects of large-scale environ-
ments, we perform a lagged correlation analysis of the
relationship between the frequency of the summertime
TCs passing over the East China Sea (i.e. predictand)
and the large-scale environmental parameters, such as the
SST, sea level pressure, OLR, 850-hPa relative vorticity

Figure 1. (a) Best tracks of tropical cyclones and (b) their monthly distribution over the East China Sea (25–35°N, 120–130 °E) during
1979–2007. The box denotes the prediction target region.
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and 850-hPa zonal wind (i.e. potential predictors) during
the preceding months, for the first 25 years (1979–2003)
of the analysis period. The last 4 years (2004–2007) are
reserved as a period independent from the predictor anal-
ysis to check the availability of the predictors analysed
in the earlier period. Among the environmental param-
eters, the SST and sea level pressure have large and
consistent lag correlations from the preceding winter to
spring (figure not shown). However, the other parame-
ters lack consistency in the lag-correlation patterns during
the preceding seasons. Physically interpretable signals
for these parameters are found only in June. Consider-
ing the lag-correlation patterns and the physical meaning
of the environmental parameters, we select the SST and
sea level pressure averaged over the spring (March, April
and May), along with the OLR, 850-hPa relative vorticity
and 850-hPa zonal wind in June as potential predictors.

3.2.1. Sea surface temperature

Figure 2(a) shows the lagged correlation coefficients of
the predictand with the SST over the Pacific Ocean in the
preceding spring for 1979–2003. The light (dark) shading
denotes the regions with a significantly positive (nega-
tive) correlation at the 95% confidence level. Variations
of the SST over the remote ocean basin (i.e. central to
eastern Pacific) rather than the WNP are found to have a
larger lag-correlation on the seasonal TC frequency over
the East China Sea. Because the SST over the west-
ern Pacific is high enough for developing TC during
the boreal summer (>28.5 °C), the relationship between
TC activity in WNP and the local SST is usually weak
(Chan and Liu, 2004; Chan, 2007). Meanwhile, the inter-
annual variations of the SST over the remote ocean basin
are larger compared with those over the western Pacific
warm pool, so that the stronger circulation response to

Figure 2. (a) The spatial distribution of lag-correlation coefficients between mean sea surface temperature for March to May and the number of
tropical cyclones passing over the East China Sea for July to September. (b) Same as (a), except for mean sea level pressure. The light (dark)
shading denotes the positively (negatively) correlated region at the 95% confidence level. The cross marks present the region selected as the

potential predictors.
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the remote SST can modify the dynamic parameters influ-
encing TC genesis and the steering flows determining TC
tracks.

While significant negative correlations exist over the
tropical eastern Pacific, major positive correlations occur
both north and south of it: one over the mid-latitude cen-
tral North Pacific, and the other over the sub-tropical
central South Pacific. The spatial distribution of the cor-
relation coefficients may reflect the variability associated
with ENSO (Harrison and Larkin, 1998). The correla-
tion pattern persists from the preceding winter to spring
and becomes weak during the peak TC season (figure
not shown). It implies that the pre-season ENSO can
be a precursory signal of the summer TC activity in
the East China Sea. We examined the predictand for
the boreal summers after the ENSO had a peak in pre-
season. The ENSO events are selected when the Niño 3.4
index averaged for December–March exceeds one stan-
dard deviation. The TC frequencies in the summer after
pre-season La Niña are 6 in 1985, 7 in 1989, 6 in 1999
and 6 in 2000, while those in the summer after pre-season
El Niño are 1 in 1983, 4 in 1987, 3 in 1992, 3 in 1995, 2
in 1998 and 4 in 2003. This suggests that the pre-season
La Niña (El Niño) may lead to higher (lower) TC fre-
quency over the East China Sea during the summer. The
pre-season ENSO affects the monsoon trough over the
WNP (Wu and Wang, 2002) which may be responsible
for the change in TC frequencies over the East China Sea
in summer (Camargo et al., 2007).

Considering the lag-correlation pattern with the spring
SST, the aforementioned three regions, that exhibit strong
correlations with TC frequency over the East China Sea,
are selected. The potential SST predictor is obtained as
the sum of the average SST over two positively correlated
regions, minus the average SST over the negatively
correlated region for the preceding spring.

3.2.2. Sea level pressure

Figure 2(b) is the lagged correlation between TC fre-
quency and the preceding spring sea level pressures. A
broad area with significant negative correlation values
is found in the tropical WNP. Just as in Figure 2(a),
the correlation pattern mainly reflects the ENSO signal,
the effects of which were discussed. This means that the
anomalously low sea level pressure over the WNP may be
a precursory signal for an abundance of TCs over the East
China Sea during the summer. Therefore, the spring sea
level pressure averaged over the tropical western Pacific,
which is statistically significant at the 95% confidence
level, was chosen as another potential predictor.

3.2.3. Outgoing long-wave radiation

The lagged correlation of the predictand with the
antecedent OLR in June for the period 1979–2003 is
shown in Figure 3(a). A negative correlation prevails
throughout the tropical WNP, indicating that an active
convection is conductive for TC occurrences over the

East China Sea. The significant negative correlation val-
ues over the WNP imply that the OLR anomaly in June
may persist in the following months (figures not shown),
which affects TC activity in those months. Thus, we
define a third potential predictor as the average OLR over
the regions within 140–180 °E and 10–20°N where the
negative correlation values are statistically significant at
the 95% confidence level.

3.2.4. 850-hPa zonal wind

Figure 3(b) is the lagged correlation between TC fre-
quency and the 850-hPa zonal wind during the preced-
ing June. The correlation pattern seems to represent a
strong WNP summer monsoon (Wang et al., 2001), dur-
ing which the monsoon trough extends further to the east
and the easterlies prevail north of the monsoon trough,
including the East China Sea. The monsoon trough vari-
ation is also related to the ENSO. As the SST over the
NINO3.4 region is increased, the equatorial anomalous
westerly over the WNP becomes stronger and the mon-
soon trough tends to extend eastward. The correlation

Figure 3. Same as in Figure 2, except for (a) the outgoing long-wave
radiation in June, (b) the 850-hPa zonal wind in June and (c) the

850-hPa relative vorticity in June.
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pattern becomes stronger in July–September (figure not
shown). These large-scale environments may form more
TCs over the Philippine Sea (Matsuura et al., 2003) and
steer them to the East China Sea. Hence, we judiciously
choose the WNP monsoon index as a fourth potential
predictor. The WNP monsoon index is generally defined
as the difference in the 850-hPa zonal winds between the
entrance region (5–15°N, 100–130 °E) and the outflow
region (20–30°N, 110–140 °E) (Wang et al., 2001). The
correlation coefficient between the WNP monsoon index
in June and the predictand is 0.41, which is significant at
the 95% confidence level.

3.2.5. 850-hPa relative vorticity

Lastly, the lagged correlation with the 850-hPa relative
vorticity in June is presented in Figure 3(c). The pos-
itively correlated regions are found along the latitude
20 °N. The correlation pattern mainly reflects the WNP
monsoon signal, the effects of which have already been
mentioned. It implies that the positive vorticity anomaly
in June tends to be followed by active summer TC activ-
ity over the East China Sea. Thus, the average 850-hPa
relative vorticity, where the correlation coefficients are
significant at the 95% confidence level (cross marked
regions in Figure 3(c)), is chosen as a fifth potential pre-
dictor.

3.3. Predictor screening

The inclusion of many potential predictors in the mul-
tivariate regression model does not ensure better pre-
dictability, even if all of them are dynamically rele-
vant predictors. Moreover, the five potential predictors

analysed in the above section are mutually correlated
because they are sensitive to large-scale circulation pat-
terns such as the ENSO and the WNP monsoon. Blindly
combining all of the predictors in a regression setting
may lead to poor prediction (Wilks, 2006). Therefore,
we attempted to select a best set of predictors from the
pool of potential predictors by stepwise regression. In the
stepwise regression, the regression is repeated by increas-
ing the number of predictors starting from one, and the
best set of predictors is determined by comparing the
results of the regression at each step (Hastenrath et al.,
1984).

The results of the stepwise regression using the LAD
regression are presented in Table I. At each step, SAE, R2

and the regression coefficient are checked while keeping
in mind that a good predictor must have a lower SAE
and a higher R2. Besides, the regression coefficient must
have the same sign, with a corresponding correlation
coefficient, between the predictor and the predictand; that
is, the SST, relative vorticity and zonal wind must have
positive regression coefficients and the sea level pressure
and OLR must have negative regression coefficients with
the predictand. In the beginning, we perform the LAD
regression with one predictor only. As a result, the SST
is identified as the primary predictor because the SAE is
the lowest and the correlation coefficient is the highest
among the five potential predictors. In the second step,
a two-predictor LAD regression is considered, including
the SST as the key predictor. When the 850-hPa relative
vorticity is utilized as an additional predictor, the SAE
is the lowest and the R2 is the highest. Thus, the 850-
hPa relative vorticity is chosen as the second primary
predictor, and is added to the set of predictors. In a same

Table I. Sum of absolute errors (SAE), R-square (R2) and regression coefficients (a) in each stage of stepwise LAD regression..

SST Sea level
pressure (SLP)

OLR 850-hPa zonal
wind (U850)

850-hPa relative
vorticity (VOR)

1st step SAE 22.17 27.11 27.45 30.92 23.34
one predictor R2 0.53 0.36 0.37 0.17 0.52

a aSST = 1.23 aSLP = −1.01 aOLR = −0.95 aU850 = 0.89 aVOR = 1.37

2nd step SAE 21.11 21.31 21.72 19.27
Two predictors R2 0.54 0.55 0.54 0.63
Including SST a aSST = 0.73 aSST = 0.99 aSST = 1.04 aSST = 0.82

aSLP = 0.56∗ aOLR = −0.32 aU850 = 0.30 aVOR = 0.56

3rd step SAE 18.03 17.94 18.18
Three predictors R2 0.65 0.66 0.64
Including SST and VOR a aSST = 1.14 aSST = 0.75 aSST = 0.57

aVOR = 1.00 aVOR = 0.57 aVOR = 1.22
aSLP = 0.62∗ aOLR = −0.12 aU850 = −0.54∗

4th step SAE 17.78 17.45
Four predictors R2 0.67 0.67
Including SST, VOR and a aSST = 0.92 aSST = 0.54
OLR aVOR = 0.79 aVOR = 1.23

aOLR = −0.26 aOLR = −0.02
aSLP = 0.48∗ aU850 = −0.53∗

The asterisk (∗) denotes that the regression coefficient has an inconsistency in the sign of a correlation coefficient between the predictor and the
predictand.

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 210–219 (2010)



216 H.-S. KIM ET AL.

manner, the OLR is also chosen as a good predictor in
the third step.

However, the sea level pressure and 850-hPa zonal
wind are excluded from the set of predictors because
they show incoherent regression coefficients as the steps
increase. The regression coefficients of sea level pressure
in the second, third and fourth steps are positive, which is
inconsistent with the correlation coefficient between the
sea level pressure and the predictand. Also, the 850-hPa
zonal wind is positively correlated with the predictand,
but the regression coefficients are negative in the third
and fourth steps. The predictors of the SST and sea
level pressure have the same physical meaning as the
ENSO. Also, both the 850-hPa zonal wind and the 850-
hPa relative vorticity are related to the WNP monsoon. So
they are highly correlated to each other [correlation (SST,
sea level pressure) = −0.91 and correlation (vorticity,
zonal wind) = 0.78]. As a result, after one of the
mutually correlated predictors is added, the other is found
to be redundant. The exclusion of predictors that have
incoherent regression coefficients is an obvious choice
for the stability and parsimony of the regression-based
prediction model.

In addition, we have examined the stepwise regression
based on the Poisson regression method. While not shown
in the table, the result of the stepwise Poisson regression
is similar to the stepwise LAD regression. It is noted that
the three predictors selected by stepwise regression are
also correlated to each other [correlation (SST, vortic-
ity) = 0.44, correlation (vorticity, OLR) = −0.68, and
correlation (OLR, SST) = −0.59]. All three correlation
coefficients are statistically significant at the 95% signif-
icant level, but not higher than those with the redundant
predictors. Independently, we examine the VIF, which is
widely used for the measure of a multicollinearity in the
predictor set. The VIF is defined as VIFi = 1/(1 − Ri

2),
where Ri

2 is the multiple coefficient of determination
in a regression of the ith predictor on all other predic-
tors. The VIFs for SST, the 850-hPa relative vorticity
and the OLR are 1.56, 1.87 and 2.32, respectively. The
VIFs do not exceed 5 which is regarded as the criti-
cal threshold for detecting the multicollinearity (Haan,

2002). So, the SST, the 850-hPa relative vorticity and
the OLR are finally selected as the set of predictors for
the statistical models to forecast the summer TC fre-
quency over the East China Sea. Three predictors explic-
itly stand for the effect of ENSO and the WNP summer
monsoon.

4. Results and validation

In order to validate the forecasting skill of the developed
model, we use a leave-one-out cross-validation method
for 1979–2003, i.e. the period used for the predictor anal-
ysis. Cross validation, the so-called Jack-knife method, is
usually applied for testing a statistical prediction model
to predict seasonal TC activity (Gray et al., 1992; Elsner
and Schmertmann, 1993; Chan et al., 1998; Chu et al.,
2007). The estimations for each year during 1979–2003
are computed by the prediction model, which is adjusted
using the observations for the rest of the 24-year period,
excluding the prediction year. For example, the predic-
tion of the TC frequency in 1995 is obtained by using the
predictors of 1995 and the regression coefficients calcu-
lated by regression analysis for the periods of 1979–1994
and 1996–2003. Likewise, the estimations for the other
years are obtained in a similar way. Also we used the pre-
dictors analysed for 1979–2003 to adjust the predictions
for 2004–2007, i.e. the period independent from the pre-
dictor analysis. The forecasting value for any year (Y) in
2004–2007 is computed using the regression coefficients
and the constant via the LAD or Poisson regression model
using data from 1979 to Y–1, along with the predictors
for the prediction year (Y).

Figure 4 shows the time series of the cross-validation
results for 1979–2003 and the prediction results for
2004–2007. The predicted time series tends to fluctuate
in accordance with the actual observations, and there is
no systematic bias. The skills of the models are accessed
via the root mean square error (RMSE) method, the
correlation between the observations and the predicted
values, and the mean square skill score (MSSS) in
Table II. The MSSS is defined as the ratio of the

Figure 4. Time series of cross-validation results (1978–2003) and the prediction results (2003–2007) in the LAD model (dashed line) and the
Poisson model (solid line), and the observed number of summertime tropical cyclones over the East China Sea (grey solid line).
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Table II. The root mean square error (RMSE), the correlation
coefficient and the mean square skill score (MSSS) of the LAD

model and the Poisson model for 1979–2007.

RMSE Correlation MSSS

LAD 1.15 0.75 0.60
Poisson 1.11 0.78 0.63

reduction in the mean square error of the predictions of
the models compared to the reference forecasts based
on the climatology value, which is recommended by
the World Meteorological Organization (WMO) for the
verification of deterministic seasonal forecasts (WMO,
2002). The RMSE is 1.15, the correlation coefficient is
0.75, and the MSSS is 0.60 for the LAD model, and are
1.11, 0.78 and 0.63, respectively, for the Poisson model.
The correlation coefficients are significant at the 99.9%
confidence level. Both models have a skill improvement
of more than 60% over the reference forecast. The results
suggest that both models are skillful in predicting summer
TC frequency over the East China Sea. Especially, the
Poisson model is slightly more skillful than the LAD
model.

The prediction results for 2004–2007, which is a
period independent from the predictor analysis, are shown
in Table III. Both models fail to predict the extremely
high number in 2004 (cf, Kim et al., 2005a) but are
somewhat in line with the actual TC variation (Figure 4).
The predictions of the Poisson model in 2005, 2006 and
2007 are closer to observations. The RMSE is 1.28 in the
LAD model and 0.82 in the Poisson model. Overall, the
RMSE values for the prediction period show comparable
magnitude to those for the analysis period, indicating a
reliable prediction skill.

To further examine the skill in predicting the seasonal
TC activity over the East China Sea, we classify the TC
counts into three categories, e.g. ‘above normal (AN)’,
‘normal (N)’ and ‘below normal (BN)’. The average
number of summer TCs passing over the East China Sea
is about 4.0. So the years when the seasonal TC counts
are 4 are defined as category N. The category AN (BN)
is defined as those years when the seasonal TC counts
are equal to or greater than 5 (equal to or less than 3).
The results of the model are also divided by the same
thresholds after the values are rounded off to integers.
The results of the comparison between the observed

Table III. Seasonal predictions of TC frequency over the East
China Sea using two methods.

Observation LAD Poisson

2004 8 5.6 (−2.4) 6.4 (−1.6)
2005 3 3.5 (+0.5) 3.2 (+0.2)
2006 4 4.4 (+0.4) 3.7 (−0.3)
2007 3 3.6 (+0.6) 3.1 (+0.1)

RMSE 1.28 0.82

Table IV. Contingency table between the observed TC fre-
quency over the East China Sea and results of the LAD model

(upper table) and the Poisson model (lower table).

Observation

BN N AN Total

LAD BN 8 2 0 10
N 5 3 2 10

AN 1 0 8 9
Total 14 5 10 29

Observation

BN N AN Total

Poisson BN 11 2 1 14
N 3 3 1 7

AN 0 0 8 8
Total 14 5 10 29

and the predicted categories are shown in Table IV. The
diagonal values represent successful predictions and the
others denote prediction failures. The results show that
the LAD model correctly predicts 57% of category BN,
60% of category N and 80% of category AN. The Poisson
model has similar results in the N and AN categories, and
predict 78% in BN category.

The prediction skills for the categorical forecasts can
be assessed using the Gerrity skill score (Gerrity, 1992),
which is one of the skill scores recommended by the
WMO for the evaluation of forecasts (WMO, 2002). The
Gerrity skill score is defined as

Gerrity skill score =
3∑

i=1

pij sij (5)

where pij are the ratios of the number in each cell to the
total number. The sij are given by

sij =
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2

[
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[
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ar =
1 −

i∑
r=1

pr

i∑
r=1

pr

(7)

where pr are the ratios of the number in each category of
the observation to the total number. A Gerrity skill score
of one represents a perfect forecast, zero is the same as
the reference forecasts based on the climatology, and it
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is negative if the forecasts are worse than the reference
forecasts. The Gerrity skill scores of the contingency
tables are 0.593 in the LAD model and 0.693 in the
Poisson model. Thus the prediction skills of the models
are higher than the reference forecasts. Moreover, the
results show that the Poisson model is more successful
in the prediction of regional TC frequency than the LAD
model.

The mean regression coefficients and regression con-
stants used in the LAD model and the Poisson model are
shown in Figure 5. The error bars denote the standard
deviation. All of them have small variations and show the
same signs as the correlation coefficient between the pre-
dictor and the predictand, suggesting that the two models
that were developed using the three predictors have stabil-
ity and consistency in the process of prediction. The mag-
nitudes of the regression coefficients imply the weights
of each predictor in the prediction model because all the
predictors are normalized. The SST appears to be a key
predictor than the others in the LAD model because the
regression coefficients of the SST have the largest magni-
tude among all three predictors. In the Poisson model, the
contributions of the 850-hPa relative vorticity and SST
are comparable. The OLR is a minor predictor in both
the LAD and Poisson models. It is noted that the absolute
value of the regression coefficients does not mean how

Figure 5. The average of the regression coefficients used in the LAD
model and the Poisson model for 1979–2007. The error bars denote

the standard deviation of each component.

much the predictors actually contribute to the TC vari-
ability over the East China Sea because the predictors are
not completely independent from each other.

5. Conclusion

Statistical models to predict the seasonal TC frequency
over the East China Sea have been employed in the
present study. The TCs passing over the East China
Sea have the potential to affect East Asian countries
where a large number of people live. The prediction
season is confined to the summertime (July–September)
because the number of TCs traversing the target region
during this season exceeds 75% of the annual number and
most of the damage caused by TCs in East Asia occurs
during this time. The method applied to the statistical
prediction models was based on the LAD regression and
the Poisson regression, which have been known to be
more appropriate in predicting seasonal TC activity.

The antecedent large-scale environmental parameters
related to the summer TC frequency over the East China
Sea, i.e. predictand, were analysed for the period of
1979–2003. The lag-correlation patterns of the predic-
tand with the antecedent spring SST and sea level pres-
sure showed ENSO-related patterns and those with the
850-hPa relative vorticity and 850-hPa zonal wind in
June have the signal related to the WNP summer mon-
soon. The OLR in June also has significant signals related
to the convective activity over the tropical WNP basin.
Using the stepwise regression, the initial five potential
predictors were screened to the final three predictors, i.e.
the SST, 850-hPa relative vorticity and OLR. The SST
was the combination of the SSTs in the three significantly
correlated regions over the Pacific. The 850-hPa relative
vorticity was averaged for a significant positively cor-
related region near the latitude of 20°N over the WNP
and the OLR was averaged for a significant negatively
correlated region over the tropical WNP.

We performed leave-one-out cross validation using
the three predictors for 1979–2003 and the predictions
for 2004–2006. The correlation coefficient between the
estimations of the model and observations was 0.75
for the LAD model and 0.78 for the Poisson model.
The RMSE is about 1.1 in both models. The models
showed a seasonal prediction skill improvement of more
than 60% compared with the reference forecasts. To
evaluate the seasonal TC activity prediction, the TC
counts were classified into three categories (i.e. BN, N
and AN). While the models exhibited comparable skill in
forecasting the above and near normal TC frequencies,
the performance of the LAD model was slightly inferior
to the Poisson model in the BN category. The regression
coefficients and constants of the models showed stability
and consistency during the prediction process. These
results imply that both the LAD model and the Poisson
model are skillful in predicting the summer TC frequency
over the East China Sea, and that the Poisson model
slightly outperforms the LAD model.

Copyright  2009 Royal Meteorological Society Int. J. Climatol. 30: 210–219 (2010)



TC PREDICTION OVER EAST CHINA SEA 219

In this study, only the reasonably relevant large-scale
environmental parameters were selected as predictors.
In this regard, the forecasts were not due to random
chance but are supported by plausible physical mech-
anisms instrumental for TC occurrences. Meanwhile,
this research suggests that seasonal TC activity over a
regional domain, such as the East China Sea, can be
skillfully predicted using lag-correlated large-scale envi-
ronmental parameters. The methodology of this work can
be applied to the prediction of TC activity over another
region. It is anticipated that the present research will be
helpful to forecasters in other TC-prone countries.
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